CONTACT VIDEO

Steigerwald Strahltechnik GmbH
  • Home
  • Company
    • STEIGERWALD STRAHLTECHNIK GMBH
    • News
    • Location
    • Jobs
    • International sales service
    • Aftersales service
    • GBT-Group
  • EB technology
    • Electron Beam Machines
    • Advantages
    • Laser welding vs. electron beam welding
    • Energy efficiency in welding technology
    • Research and development
    • History of EB technology
    • Electron beam generator
    • Glossary
  • Machines
    • Electron Beam Systems
    • EBOCAM®
    • EBOMOVE
    • EBOPULS Perforation machines
    • EBOCONT Continuous welding machines
    • EBOGEN Generators
    • Used machines
    • Request for EB welding machine
  • Application areas
    • Steigerwald Application areas
    • Welding
    • Additive Manufacturing
    • Drilling
    • Surface treatment
    • Welding at atmosphere
  • Job-shop
    • Job shop with EB technology
  • References
    • SST References
    • ArianeGroup
    • Cern
    • TWI Cambridge
    • Lufthansa Technik
    • Listemann AG
    • Electron beam welding - SwissBeam AG
  • Info center
    • SST Info center
    • Videos
    • Exhibitions & Events
    • Downloads center
    • Directions / Contact
    • Terms and conditions
    • Impressum
    • Privacy policy
    • Cookie policy
Steigerwald Strahltechnik GmbH
  • Deutsch
  • English
  • Français
  • Polski
  • Italiano
  • Company
    • Steigerwald Strahltechnik GmbH
      • Our objective – satisfied customers worldwide. The physicist Dr. h.c. Karl-Heinz Steigerwald builds the first electron beam processing machine in 1952 and founded the company Steigerwald Strahltechnik GmbH.

        Read more

      • News
      • Location
      • Jobs
      • International sales service
      • Aftersales service
      • GBT-Group
  • EB technology
    • eb technology
      • Within the GBT Group, Steigerwald Strahltechnik GmbH is the specialist for chamber machines designed for electron beam welding and electron beam drilling purposes, as well as for EB generators in high voltage technology (up to 150 kV and over).

        Read more

      • Advantages
      • Laser welding vs. electron beam welding
      • Energy efficiency in welding technology
      • Research and development
      • History of EB technology
      • Electron Beam Generator
      • Glossary
      • Chamber machines designed for electron beam welding and electron beam drilling

        Specialist for chamber machines designed for welding and drilling purposes

        Electron beam technology

        EB generators in high voltage technology

  • Machines
    • Electron Beam Machines
      • The reliable high-tech processes for your production! EB welding and drilling technology was introduced to industry many years ago as a reliable means of fabrication.

        Read more

      • EBOCAM®
      • EBOMOVE
      • EBOPULS Perforation machines
      • EBOCONT Continuous welding machines
      • EBOGEN Generators
      • Used machines
      • Request for EB welding machine
      • Electron beam systems

        Electron beam systems

        Continuous welding machines EBOCONT®

        Continuous welding machines EBOCONT®

  • Application areas
    • Steigerwald Application areas
      • The electron beam (=EB) is a universal tool for processing metallic materials by electron beam welding, EB drilling and electron beam surface treatment and has been used in industry for many years.

        Read more

      • Welding
      • Additive manufacturing
      • Drilling
      • Surface treatment
      • Welding at atmosphere
      • Electron beam technology

        Electron beam technology

        Electron beam technology

        Welding • Surface Treatment • Drilling

        Welding at atmosphere

        Welding at atmosphere

  • Job-shop
    • Job shop with electron beam technology
      • Relieve your resources and increase your efficiency!

        Read more

      • job shop with EB technology
      • Job shop with EB technology

        Job shop with EB technology

  • References
    • SST References
      • SST EB welding machines (EB = electron beam) are ideally suitable for the industrial production of work pieces. They are used everywhere when complex components are welded with a maximum requirement for precision and durability.

        Read more

      • Cern
      • TWI Cambridge
      • Lufthansa Technik
      • EADS
      • Listemann AG
      • SwissBeam AG
      • Referenzen der Steigerwald EB Technik
        Referenzen der Steigerwald EB Technik
        Referenzen der Steigerwald EB Technik
        Referenzen der Steigerwald EB Technik
        Referenzen der Steigerwald EB Technik
        Referenzen der Steigerwald EB Technik
        Referenzen der Steigerwald EB Technik
  • Info center
    • SST Info center
      • There are many aspects to the electron beam technology and the electron beam welding. Not everything can be dealt with on our webpages.

        Read more

      • Videos
      • Exhibitions & Events
      • Downloads center
      • Directions / Contact
      • Terms and conditions
      • Impressum
      • Privacy policy
      • Cookie policy
Electron beam technology - Application areas

Surface Treatment with the electron beam

With the local surface modification (often also "edge layer hardening") in selected ranges of workpiece surfaces, point-exactly and only where necessary, changed characteristics can be produced, as this happens e.g. with the hardening. With the exactly controllable electron beam a precisely defined amount of heat is applied within a very short time, which is necessary for a certain process. In this process, only near-surface zones are transformed (0.1 - 1 mm; sometimes more) and the structure of the component remains unaffected, resulting in minimal component distortion.

Another significant feature of the electron beam surface modification is that no separate cooling is required, as the heat dissipation into the solid component is sufficient.

Surface modification as part of EB technology has many possible applications - nearly in all areas of mechanical engineering, automotive engineering, medical technology, aerospace engineering and many more.

EB technology

NC axes in the process: rotation, focus, deflection

Oberflächenbehandeln mit dem Elektronenstrahl

51CtV: 4 oval cam tracks, hardness depth > 0.4mm

Processing variants

The electron beam surface modification

There are various process possibilities. A significant distinction must be made between processes that take place in the solid phase, i.e. without any melting of the surface, which can even be ground prior to this, and processes that go beyond the near-surface melt flow and thus enable significantly stronger property changes (but usually also require post-processing).

The following chart explains the possibilities for electron beam surface modifications. For further details please click the active buttons in the chart.

 

haerten diagramm en

alt alt alt alt alt alt alt

SM - Surface Modification

Solid phase

Hardening

Hardening is characterised as; heating up steel to the Austenitic temperature by the energy of the electron beam followed by rapid quenching – producing the structural form of Martensite (hardening structure). Martensite is required in steels to achieve a considerable increase in hardness. The achievable (Martensitic) hardness is directly dependent on the carbon content of the steel. The higher the carbon content, the greater the hardness.

Electron beam hardening can also be combined with a pre-executed thermo-chemical process, e.g. nitriding.

Example: Transverse macro-section Hardness profile measured from
surface to base material HV 0.3
Elektronenstrahl Härten Elektronenstrahl Härten

Transformation

With an appropriate dosage of the energy input, surface areas in the solid phase can also be converted locally and in a restricted area. The type and level of conversion depend on the metallurgical characteristics of the material. In the case of steels, tempering is an example: If necessary, it can also be used for EB hardened surfaces in order to limit a certain maximum hardness.

Liquid phase

Texturing

The electron beam melts the surface in smallest areas and forms unevenness, e.g. small saucers, etc., during solidification. These relatively simple textures can then give the surface a defined grip, for example, as in the case of rollers, etc.

More complex patterns with fast beam deflection (EBO Jump) lead to controlled evaporation, throwing up and redistribution of material. In this way, complex structures can be created, tailor-made for the specified requirements.

Elektronenstrahl Texturieren Elektronenstrahl Texturieren Elektronenstrahl Texturieren Elektronenstrahl Texturieren
Images of features made using the Surfi-Sculpt®-process, courtesy of TWI Ltd.

Hardening

In order to achieve large hardening depths (about some millimetres) in ferrous materials, the surface can be melted locally. Self-quenching results in a structural change with a corresponding increase in hardness, e.g. as with martensite or ledeburite.

Due to the melting process, the workpiece surface becomes uneven and must usually be reworked. By using strip or dot pattern patterns during the EB process, it can be avoided that too large coherent areas are melted and too much unevenness is produced.

Elektronenstrahl haerten 2 1

Transformation

Similar to liquid-phase hardening of ferrous materials, local structural changes can also be achieved in the microstructure of other materials. Especially with cast materials with their typical coarse-crystalline structure, grain refinement can be achieved which results in comparatively better wear characteristics.

umwandeln Sample: Al-Si piston alloy

Left: Cast structure, right: EB remelt structure (in the same scale)

Embedding

Embedding hard composites

Hard composites in particular can be embedded locally into the surface of a component to increase wear resistance, if these are re-melted with the electron beam. With a moderate energy input, the hard particles remain in the remelting area; with a higher energy input, they are split and finely spread or even alloyed.

Elektronenstrahl 

Elektronenstrahl

Embedded tungsten carbides

Elektronenstrahl

Fused tungsten carbides

Alloying

By adding other materials, e.g. by means of wire or a coating layer, into an EB remelting process, the treated surface area can be alloyed in a defined manner. This makes a specific change of the characteristics possible.

  • You are here:  
  • Home
  • Application areas
  • Surface treatment

logo

  • Home
  • Company
    • STEIGERWALD STRAHLTECHNIK GMBH
    • News
    • Location
    • Jobs
    • International sales service
    • Aftersales service
    • GBT-Group
  • EB technology
    • Electron Beam Machines
    • Advantages
    • Laser welding vs. electron beam welding
    • Energy efficiency in welding technology
    • Research and development
    • History of EB technology
    • Electron beam generator
    • Glossary
  • Machines
    • Electron Beam Systems
    • EBOCAM®
    • EBOMOVE
    • EBOPULS Perforation machines
    • EBOCONT Continuous welding machines
    • EBOGEN Generators
    • Used machines
    • Request for EB welding machine
  • Application areas
    • Steigerwald Application areas
    • Welding
    • Additive Manufacturing
    • Drilling
    • Surface treatment
    • Welding at atmosphere
  • Job-shop
    • Job shop with EB technology
  • References
    • SST References
    • ArianeGroup
    • Cern
    • TWI Cambridge
    • Lufthansa Technik
    • Listemann AG
    • Electron beam welding - SwissBeam AG
  • Info center
    • SST Info center
    • Videos
    • Exhibitions & Events
    • Downloads center
    • Directions / Contact
    • Terms and conditions
    • Impressum
    • Privacy policy
    • Cookie policy

SST ELECTRON BEAM TECHNOLOGY at Instagram SST ELECTRON BEAM TECHNOLOGY at Facebook SST ELECTRON BEAM TECHNOLOGY at Youtube SST ELECTRON BEAM TECHNOLOGY at linkedin SST ELECTRON BEAM TECHNOLOGY at Xing